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LETTER TO THE EDITOR
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‡ Universit́e de Paris-Sud, Mathématiques, B̂atiment 425, 91405 Orsay Cedex, France
§ Department of Mathematics and Statistics, York University, North York, Ontario M3J 1P3,
Canada
‖ Sezione INFN and Dipartimento di Fisica, Università di Padova, Padova, Italy
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Abstract. We consider self-avoiding polygons on the simple cubic lattice with a torsion
fugacity. We use Monte Carlo methods to generate large samples as a function of the torsion
fugacity and the number of edges in the polygon. Using these data we investigate the shapes
of the polygons at large torsion fugacity and find evidence that the polygons have substantial
helical character. In addition, we show that these polygons have induced writhe for any non-zero
torsion fugacity, and that torsion and writhe are positively correlated.

There is considerable interest in geometrical measures of entanglement complexity of self-
avoiding walks, and related structures such as polygons and ribbons, and these ideas have
proved to be especially useful in describing models of double stranded polymers such as
DNA (Baueret al 1980). Two useful measures of geometrical entanglement complexity for
a simple closed curve in three dimensions are writhe and torsion. Torsion characterizes the
local helicity of the curve while writhe captures information about the non-local crossings
of the curve with itself. The writhe of a polygon inZ3 can be conveniently calculated by
making use of a theorem due to Lacher and Sumners (1991) which shows that the writhe
is the mean of the linking number of the polygon with its pushoffs into four mutually non-
antipodal octants. This result is an essential ingredient in the proof that the expected value
(over alln-gons) of the absolute value of the writhe of polygons inZ3 increases at least as
fast as

√
n (Janse van Rensburget al 1993). If the polygon has fixed knot type then the

expected value of the writhe depends only weakly onn but is a function of the knot type
of the polygon (Janse van Rensburget al 1997), and is zero if the knot is achiral.

For a smooth curve inR3 one can define the torsion in terms of a line integral (see,
for example, Struik 1988) but, since we shall be concerned with piecewise linear curves,
we define it in terms of dihedral angles (Alexandrov and Reshetniyak 1989). A polygon is
made up of a sequence of line segments. Each consecutive triple of line segments defines a
dihedral angle about the central segment of the triple. If the three line segments are coplanar
this dihedral angle is either 0 orπ . If they are non-coplanar it is±π/2. A positivedihedral
angle is a dihedral angle ofπ/2 and anegativedihedral angle is a dihedral angle of−π/2.
We associate a quantityτi with the ith line segment, and setτi = ±1 according to whether
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the corresponding dihedral angle is positive or negative, and zero otherwise. We define the
torsion of the polygon as

t =
∑
i

τi . (1)

Let pn(t) be the number oforiented n-edge polygons with torsiont , and define the
corresponding generating function

Zn(β) =
∑
t

pn(t) eβt (2)

whereβ is the torsion fugacity. We have shown that

lim
n→∞
〈t〉
n
= d

dβ
lim
n→∞ n

−1 logZn(β) 6= 0 (3)

for anyβ 6= 0, and

lim
β→∞

lim
n→∞〈t〉/n = 1 (4)

(Tesi et al 1997) so that at any non-zero torsion fugacity the mean torsion scales withn,
and the proportionality constant goes to unity asβ goes to plus infinity. At zero torsion
fugacity 〈t〉 = 0 but the expected value of the absolute value of the torsion increases at
least as fast as

√
n (Tesi 1997).

Figure 1. The mean torsion (per edge) as a function of the parameterβ, for n = 100 (•),
200 (♦), 256 (×), 300 (+), 400 (M), 512 (◦) and 600(�).

The purpose of this letter is to use Monte Carlo methods to investigate the shapes of
polygons with torsion as a function of the torsion fugacity and the number of edges in
the polygon. We also compute the mean writhe as a function of the torsion fugacity and
show that writhe is induced by torsion. The basic algorithm used is a pivot algorithm
for polygons (Madraset al 1990) combined with a set of local moves which include the
Verdier–Stockmayer moves (Verdier and Stockmayer 1961) as well as crankshaft moves.
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Figure 2. The n dependence of the ratio between the mean value of the lowest (λ1) and the
highest (λ3) eigenvalue of the metric tensor. Different curves correspond to three differentβ

values: 0.0 (×), 1.7 (�) and 2.0 (•).

Figure 3. Theβ-dependence of the mean number of contacts (per edge) for differentn values:
100 (•), 200 (♦), 256 (×), 300 (+), 400 (M), 512 (◦) and 600(�).

Although the pivot algorithm alone works well forβ = 0 the local moves are essential
for intermediate values ofβ since otherwise the autocorrelation time of the Markov chain
becomes very large. At largeβ the inclusion of local moves is not enough to avoid the
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Figure 4. The mean induced writhe (per edge) as a function of the parameterβ, for n = 100(•),
200 (♦), 256 (×), 300 (+), 400 (M), 512 (◦) and 600(�).

quasi-ergodic problem and we combine the above algorithm with a multiple Markov chain
algorithm originally invented by Geyer (1991). The idea is to run a set of Markov chains
in parallel (at a fixed set of values ofβ) and swap configurations between the individual
Markov chains. With appropriately chosen swapping probabilities the limit distribution of
the composite Markov chain is the product distribution at the various values ofβ. For
details see Tesiet al (1996) and Orlandini (1997).

We have estimated the torsion as a function of both the number,n, of edges in the
polygon and the torsion fugacityβ. In figure 1 we plot〈t〉/n as a function ofβ for various
values ofn. It is clear that the data approximately collapse to a single curve, consistent
with the scaling law

〈t〉 ∼ A(β)n (5)

and the curve shown in figure 1 is a rough estimate of the functionA(β). ClearlyA(β) 6 1
and it seems to be approaching this value monotonically asβ increases, consistent with (3)
and (4).

The rigorous results on related topics of Tesiet al (1997) do not address directly the
question of the shapes of polygons as a function of the torsion fugacity. To investigate this
question we have calculated the mean square radius of gyration and also the metric tensor

Qαβ = 1

2(n+ 1)2
∑
k,m

(rαk − rαm)(rβk − rβm) (6)

and its eigenvaluesλ1 6 λ2 6 λ3.
We have calculated the mean square radius of gyration〈S2〉 as a function ofn andβ

and found that it is an increasing function ofβ at each value ofn, increasing more sharply
at largern. We expect that

〈S2〉 ∼ D(β)n2ν(β) (7)
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and that the exponentν(β) will have the self-avoiding walk value,ν = 0.588 (Li et al
1995), atβ = 0 and thatν(∞) = 1. We also expect a jump discontinuity inν(β) and
that it will otherwise be independent ofβ. The following argument suggests that the jump
discontinuity occurs atβ = ∞. Write x, y, z andx̄, ȳ, z̄ for unit vectors along, respectively,
the positive and negativex-, y- andz-axes. For anyβ 6= 0 the ground state of a sequence
of edges will be degenerate, consisting of sequences such as (xyzxyzxyz . . .), (xȳz̄xȳz̄ . . .),
etc. At any non-zeroβ there will be a tendency to form helical sections which will then
be broken by random fluctuations (except at infiniteβ), and new helical sections will then
follow the break. However, these helical sections might be different, leading to structures
such as (xyzxyzxyzxxxxxxȳz̄xȳz̄ . . .) where the axes of the two helical sections point
in different directions. This lack of correlation between the directions of the helix axes
suggests that we should have self-avoiding walk behaviour at large length scales, for every
β 6= ±∞. At small length scales one will typically see helices. This leads us to expect
thatν(β) = 0.588 for every finite value ofβ but that longer polygons will be needed to see
this asymptotic behaviour asβ increases. We have been unable to confirm this behaviour
numerically, presumably because longer polygons would be needed than those which we
have been able to produce. As a result we regard the location of the jump discontinuity as
an open question from the numerical point of view.

To confirm this general picture of helical sections whose length increases asβ

increases we have estimated the mean values of the eigenvalues of the metric tensor. At
β = 0〈λ1〉/〈λ3〉 is fairly constant asn increases while atβ = 2 it decreases rapidly asn
increases, indicating rod-like behaviour on the length scales which we can probe in this
calculation. See figure 2. At largen it is clear that〈λ1〉/〈λ3〉 is a strongly decreasing
function ofβ. On the other hand,〈λ1〉/〈λ2〉 is fairly constant (with a value around 0.3) for
06 β 6 2 and for 1006 n 6 400.

We have also estimated the mean number of contacts (edges of the lattice incident on
two vertices of the polygon which are not themselves edges of the polygon),〈c〉, and we
find that there is some tendency for theβ-dependence of〈c〉/n to approach a limiting curve
asn increases. See figure 3. Certainly〈c〉/n is a decreasing function ofβ. The decrease
in the mean number of contacts (asβ increases) is consistent with a less compact structure
which could be elongating and becoming less spherically symmetric asβ increases.

Taken together with the observation that the object is becoming more rod-like (on
small and intermediate length scales) and the small and decreasing values of〈λ1〉/〈λ3〉 as
β increases, these results indicate that the polygon aquires some helical character as the
torsion fugacity increases.

One would expect that such helical regions would affect the writhe of the polygon and
we have checked this by computing the mean writhe as a function of the torsion fugacity.
Our results indicate that the mean writhe is non-zero at non-zero values of the torsion
fugacity. That is, torsion induces writhe. In figure 4 we plot the mean writhe per edge of
the polygon as a function of the torsion fugacity for various values ofn. Again the data
collapse to a single curve and suggest that the mean induced writhe scales withn. We write
w for the induced writhe and

〈w〉 ∼ B(β)n (8)

for the apparent behaviour of the mean induced writhe. Clearly〈w〉 � 〈t〉 but 〈w〉 increases
monotonically with increasingβ. Although it is known (at least for the smooth case) that
there are conformations of a simple closed curve which have writhe increasing liken4/3

(Cantarellaet al 1997) it appears that the writhe induced by torsion does not increase faster
than linearly withn.
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In this paper we have simulated a model of lattice polygons with a torsion fugacity.
Positive torsion fugacity was found to induce positive writhe in this model. Our results
are similar to those obtained in computer simulations of a rod model of DNA with a twist
fugacity (Vologodskiet al 1992): torsional energy is released as induced supercoiling (which
manifests itself as writhe) (Vologodskiet al 1992). Our results on the shape and size of
the polygons indicate that for non-zero values of the fugacity the polygons have rod-like
(helical) shapes on small and intermediate length scales. On the other hand, a density of
random regions in the polygons will destroy all long-ranged correlations, and we expect the
polygon to have self-avoiding walk exponents in the asymptotic limit, for any finite value
of β. This model could also be of interest in the study of biopolymers such as polypeptides
or proteins, since on small length scales the polygons appear to have helical regions.

We are pleased to acknowledge financial support from INFN and from NSERC. SGW would
like to thank the members of the Department of Physics, University of Padua, and especially
Attilio Stella, for their kind hospitality during his visit.
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